Abstract
The FET protein family, comprising FUS, EWS, and TAF15, plays crucial roles in mRNA maturation, transcriptional regulation, and DNA damage response. Clinically, they are linked to Ewing family tumors and neurodegenerative diseases such as amyotrophic lateral sclerosis. The fusion protein EWS::FLI1, the causative mutation of Ewing sarcoma, arises from a genomic translocation that fuses a portion of the low-complexity domain (LCD) of EWS (EWSLCD) with the DNA binding domain of the ETS transcription factor FLI1. This fusion protein modifies transcriptional programs and disrupts native EWS functions, such as splicing. The exact role of the intrinsically disordered EWSLCD remains a topic of active investigation, but its ability to phase separate and form biomolecular condensates is believed to be central to EWS::FLI1's oncogenic properties. Here, we used paramagnetic relaxation enhancement NMR, microscopy, and all-atom molecular dynamics (MD) simulations to better understand the self-association and phase separation tendencies of the EWSLCD. Our NMR data and mutational analysis suggest that a higher density and proximity of tyrosine residues amplify the likelihood of condensate formation. MD simulations revealed that the tyrosine-rich termini exhibit compact conformations with unique contact networks and provided critical input on the relationship between contacts formed within a single molecule (intramolecular) and inside the condensed phase (intermolecular). These findings enhance our understanding of FET proteins' condensate-forming capabilities and underline differences between EWS, FUS, and TAF15.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.