Abstract

HypothesisUnderstanding moisture sorption in porous insulation materials is challenging due to the influence of multiscale pore structures on phase behavior and transport properties. Dynamic moisture sorption in dual-porous materials is likely co-determined by interior micro- and nano-scale pores, and an accurate physical model for predicting moisture evolution can be developed by clarifying the sorption mechanisms. ExperimentsMoisture behavior during the dynamic sorption of dual-porous insulation material is measured by low-field nuclear magnetic resonance (NMR) experiments. The contributions of micro- and nano-scale pores to the adsorbed moisture are differentiated using NMR relaxometry, and the evolution of moisture morphology is quantitatively analyzed. FindingsAnalysis of T2 evolution reveals that the moisture in nano-scale pores alters from adsorption layers to liquid with increasing relative humidity (RH), while minimal sorption occurs in micro-scale pores. Moisture is mainly transferred as vapor molecules at low RH levels, with the dynamic sorption enhanced by molecular diffusion in micro-scale pores. Capillary flow in nano-scale pores dominates moisture transport when RH rises above a threshold, leading to a significant increase in apparent moisture diffusivity. According to the elucidated mechanism, a physical model is further developed to predict moisture sorption inside dual-porous insulation materials, and it may serve as a basis for evaluating and optimizing the performance of dual-porous systems in different environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.