Abstract

In this study, we explored the structural dynamics of Mcl-1, an anti-apoptotic protein. On the basis of structural ensembles, the essential dynamics was extracted and showed two major axes of variability: a breathing motion at the binding interface and a correlated motion through the internal loops. A free energy surface characterizing the breathing motion at the binding interface was generated and suggested an equilibrium between a closed conformation and a "ready to bind" conformation as the predominant states of Mcl-1 in solution. Moreover, the analysis of the dynamics along the internal loops revealed a hidden communication network of transient and cryptic pockets controlling the allosteric inhibition of Mcl-1. A detailed model joining the pocket crosstalk and salt bridge networks along the internal loops was proposed and allowed us to shed light on the key interactions governing Mcl-1's allosteric inhibition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.