Abstract

The lithium and sodium storage behavior of porous carbon remains controversial, though it shows excellent cycling stability and rate performances. This Letter discloses the insertion, adsorption, and filling properties of porous carbon. 7Li nuclear magnetic resonance (NMR) spectroscopy recognized inserted and adsorbed lithium in this porous carbon but did not observe any other forms of lithium above 0.0 V vs. Li+/Li. In addition, although lithium insertion mainly takes place at low potentials, adsorption was found to be the main form of lithium storage throughout the investigated potential range. Such a storage feature is responsible for the excellent rate performance and high specific capacity of porous carbon. Raman spectroscopy further demonstrated the structural reversibility of the carbon in different potential ranges, verifying the necessity to optimize the potential range for a better cycling performance. These findings provide insights for the design and application of porous carbon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call