Abstract

AbstractThe stress field in the eastern United States is commonly considered to be broadly uniform and due to homogeneous far‐field forces; however, modern and geologic stress indicators in this region show substantial heterogeneity. Using CitcomS to model stresses based on simple input density, temperature, and viscosity fields, we show that local isostasy is key in explaining the intraplate stress field in the southeastern United States. Crustal thickness variations appear to be most important in reproducing observations, although we slightly better match the observed stress field by including variable crustal viscosity informed by magnetotelluric imaging. Our results demonstrate that local gravitational body forces can substantially reorient far‐field stresses and thereby influence patterns of intraplate seismicity. We also show that variable crustal viscosity encourages a steepening of isostatic topography in the southeastern United States; this observation suggests that a sharp boundary in crustal strength may be important in explaining the apparently long‐lived Appalachian topographic escarpment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.