Abstract
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) are enzymes that exhibit an important transcription activity. Dysfunction of these enzymes may lead to different diseases including cancer, cardiovascular, and other diseases. Therefore, these enzymes are the potential target for the generation of new therapeutics. C646 is a synthetic p300 HAT inhibitor; its structural and the electrostatic properties are the paradigm to understand its activity in the active site of p300 HAT enzyme. The docked C646 molecule in the active site forms expected key intermolecular interactions with the amino acid residues Trp1436, Tyr1467, and one water molecule (W1861); and these interactions are important for acetylation reaction. When compare the active site structure of C646 with the gas-phase structure, it is confirmed that the electron density distribution of polar bonds are highly altered, when the molecule present in the active site. In the gas-phase structure of C646, a large negative regions of electrostatic potential is found at the vicinity of O(4), O(5), and O(6) atoms; whereas, the negative region of these atoms are reduced in the active site. The molecular dynamics (MD) simulation also performed, it reveals the conformational stability and the intermolecular interactions of C646 molecule in the active site of p300.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.