Abstract

Cell-cell communication is crucial for cells to sense, respond and adapt to environmental cues and stimuli. The intercellular communication process, which involves multiple length scales, is mediated by the specific binding of membrane-anchored receptors and ligands. Gaining insight into two-dimensional receptor-ligand binding kinetics is of great significance for understanding numerous physiological and pathological processes, and stimulating new strategies in drug design and discovery. To this end, extensive studies have been performed to illuminate the underlying mechanisms that control intercellular receptor-ligand binding kinetics via experiment, theoretical analysis and numerical simulation. It has been well established that the cellular microenvironment where the receptor-ligand interaction occurs plays a vital role. In this review, we focus on the advances regarding the regulatory effects of three factors including 1) protein-membrane interaction, 2) biomechanical force, and 3) bioelectric microenvironment to summarize the relevant experimental observations, underlying mechanisms, as well as their biomedical significances and applications. Meanwhile, we introduce modeling methods together with experiment technologies developed for dealing with issues at different scales. We also outline future directions to advance the field and highlight that building up systematic understandings for the coupling effects of these regulatory factors can greatly help pharmaceutical development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.