Abstract

Biomacromolecules exist and function in a crowded and spatially confined intracellular milieu. Single-cell analysis has been an essential tool for deciphering the molecular mechanisms of cell biology and cellular heterogeneity. However, a sound understanding of in vivo environmental effects on single-cell quantification has not been well established. In this study, via cell mimicking with giant unilamellar vesicles and single-cell analysis by an approach called plasmonic immunosandwich assay (PISA) that we developed previously, we investigated the effects of two in vivo environmental factors, i.e., molecular crowding and spatial confinement, on quantitative biochemistry in the cytoplasm of single cells. We find that molecular crowding greatly affects the biomolecular interactions and immunorecognition-based detection while the effect of spatial confinement in cell-sized space is negligible. Without considering the effect of molecular crowding, the results by PISA were found to be apparently under-quantitated, being only 29.5-50.0% of those by the calibration curve considering the effect of molecular crowding. We further demonstrated that the use of a calibration curve established with standard solutions containing 20% (wt) polyethylene glycol 6000 can well offset the effect of intracellular crowding and thereby provide a simple but accurate calibration for the PISA measurement. Thus, this study not only sheds light on how intracellular environmental factors influence biomolecular interactions and immunorecognition-based single-cell quantification but also provides a simple but effective strategy to make the single-cell analysis more accurate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.