Abstract

Nanocarbons have been demonstrated as promising carbon catalysts for substituting metal-based catalysts for the green treatment of wastewater. In this study, oxygen-functionalized mesoporous carbon (OCMK-3) was prepared by wet oxidation and exhibited high catalytic performance against ciprofloxacin (CIP) by activation of persulfate. The effects of environmental parameters (pH, temperature, coexisting ions) and process parameters (temperature, sodium persulfate concentration, catalyst agent dosage, initial concentration) on the removal of CIP were investigated. Compared with the pristine ordered mesoporous carbon (CMK-3), the removal efficiency of CIP by OCMK-3 was increased by 32% under optimal conditions. This rise in activity was attributed to the increase in oxygen-containing functional groups, porosity, and specific surface area of OCMK-3 with improved structural defects and electron transfer efficiency. Furthermore, based on active species scavenging experiments, a dual-pathway mechanism of the radical and nonradical pathways was discovered. The rational degradation pathway of CIP was investigated based on liquid chromatography-mass spectrometry (LC-MS). In addition, the OCMK-3/PS system exhibited high decomposition efficiency in pharmaceutical wastewater treatment. This study provides an in-depth mechanism for the degradation of organic pollutants by carbon-based PS-AOPs and provides theoretical support for further studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call