Abstract
The synthesis, characterization, and oxidation reaction of a tropospherically relevant terpene bound to a glass surface are reported. Vibrational broadband sum frequency generation (SFG) is used to characterize the various terpene-modified glass surfaces and track their interaction with ozone. SFG spectra indicate that, although orientations of the surface-bound terpenes depend on the linker strategies employed, the CC double bond is accessible to gas-phase ozone regardless of the strategy applied. Exposure of the terpene-functionalized surface to ppm levels of ozone at 1 atm and 300 K yields an initial reaction probability of approximately 1 × 10-5 per surface collision, which is significantly higher than the corresponding gas-phase reaction involving 1-methyl-1-cyclohexene (5 × 10-7 from gas-phase collision theory). The interaction of ozone with a saturated octyl silane-functionalized glass surface leads to a slight molecular reorientation, or tilting, of the terminal CH3 groups on a much slower time scale. Our work demonstrates that SFG spectroscopy can be used to determine reaction probabilities of heterogeneous atmospheric reactions and bridges the gap between atmospheric chemistry and surface functionalization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.