Abstract

Polystyrene nanoplastics (PSNPs, <100nm), an artificial pollutant that is widespread in the environment, can be assimilated by plants to alter plant gene expression and its metabolic pathway; thus, interfering with physiological homeostasis and growth of plants. Recently, the biosafety and potential environmental risks of PSNPs have attracted enormous attention. However, the knowledge regarding the uptake and phytotoxicity of atmosphere PSNPs subsiding to plant leaves is still limited. Here, we separately applied 50 mg/L and 100 mg/L PSNPs on cucumber leaves to simulate the plant response to the atmosphere PSNPs. We found that the PSNPs can be accumulated on the surface of cucumber leaves and are also able to be uptake by cucumber leaf stomata. The repertoires of metabolomics and transcriptomics from cucumber leaves upon PSNPs treatment demonstrated that the deposition of PSNPs on leaves alters the biosynthesis of various metabolites and the expression of a variety of genes. The leaves exposure to low concentration (50 mg/L) of PSNPs impact the genes involved in carbohydrate metabolism and the biosynthesis of metabolites related to membrane stability maintenance, thereby, probably enhancing plant tolerance to the stress caused by PSNPs. Whereas, exposure to high concentration (100 mg/L) of PSNPs, both nitrogen and carbohydrate metabolism in cucumber leaves are affected, as well as that the photosynthetic capacity was decreased, leading to the threat to plant health. Combined omics technologies, our findings advance our understanding about how the PSNPs released to ecological environment influence the terrestrial plant growth and provide phytotoxic mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call