Abstract

ABSTRACT One of the common oil-field wellbore problems is paraffin deposition. Even though hot oiling is usually the first method tried for removing paraffin, few operators appreciate the limitations of hot oiling and the potential for hot oiling to aggravate well problems and cause formation damage. Several hot oiling jobs were monitored to understand "old pumper's tales" and the dynamics of hot oiling. The field work was supported with laboratory analyses of the oil and calculations of thermal effectiveness. This limited study has shown that the chemical and thermal processes that occur during hot oiling are very complex and that there are significant variations in practices among operators. Key findings of this work include: (1) During a typical hot oiling job, a significant amount of the oil injected into the annulus goes into the formation, and hence, has the potential to damage the formation. (2) Organic particulates in stock tank oil may not completely dissolve/melt as the oil passes through the hot-oiling-truck heat exchanger, hence, these particulates may plug the formation. (3) Hot oiling can vaporize oil in the tubing faster than the pump lifts oil. This interrupts paraffin removal from the well, and thus, since the wax is not removed from the well, the wax is refined into harder deposits, can go deeper into the well, and can stick rods. These insights have been used to determine good hot oiling practices designed to maximize wax removal and minimize formation damage. Part of this work was performed by Sandia National Laboratories operated for the United States Department of Energy under contract DE-AC04-76DP00789.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.