Abstract

Second-generation ethanol production involves the use of agricultural and forestry waste as feedstock, being an alternative to the first-generation technology as it relies on low-cost abundant residues and does not affect food agriculture. However, the success of second-generation biorefineries relies on energetically efficient processes and effective enzyme cocktails to convert cellulose into fermentable sugars. β-glucosidases catalyze the last step on the enzymatic hydrolysis of cellulose; however, they are often inhibited by glucose. Previous studies demonstrated that glucose-6-phosphate (G6P) is a positive allosteric modulator of Bacillus polymyxa β-glucosidase A, improving enzymatic efficiency, providing thermoresistance, and imparting glucose tolerance. However, the precise molecular details of G6P-β-glucosidase A interactions have not yet been described so far. We investigated the molecular details of G6P binding into B. polymyxa β-glucosidase A through in silico docking using the site identification by ligand competitive saturation technology followed by site-directed mutagenesis studies, from which an allosteric binding site for G6P was identified. In addition, a mechanistic shift toward the transglycosylation reaction as opposed to hydrolysis was observed in the presence of G6P, suggesting a new role of G6P allosteric modulation of the catalytic activity of β-glucosidase A.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call