Abstract

Algeria is one of the wealthiest countries in terms of hydrothermal sources, with more than two hundred hot springs. However, diverse and little-described microbial communities colonize these habitats, making them an intriguing research subject. This work reports the isolation of bacteria from two hot springs water samples in northeastern Algeria, evaluating their enzymatic activities and effect on plant pathogens. Out of the obtained 72 bacterial isolates and based on the 16S rRNA gene sequence analysis, the strain HGR5 belonging to Bacillus halotolerans had the most interesting activity profile. Interestingly, HGR5 was substantially active against Fusarium graminearum, Phytophthora infestans, and Alternaria alternata. Furthermore, this strain presented a high ability to degrade casein, Tween 80, starch, chitin, cellulose, and xylan. The genome sequence of HGR5 allowed taxonomic validation and screening of specific genetic traits, determining its antagonistic and enzymatic activities. Genome mining revealed that strain HGR5 encloses several secondary metabolite biosynthetic gene clusters (SM-BGCs) involved in metabolite production with antimicrobial properties. Thus, antimicrobial metabolites included bacillaene, fengycin, laterocidine, bacilysin, subtilosin, bacillibactin, surfactin, myxovirescin, dumulmycin, and elansolid A1. HGR5 strain genome was also mined for CAZymes associated with antifungal activity. Finally, the HGR5 strain exhibited the capacity to degrade polycaprolactone (PCL), a model substrate for polyester biodegradation. Overall, these results suggest that this strain may be a promising novel biocontrol agent with interesting plastic-degradation capability, opening the possibilities of its use in various biotechnological applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.