Abstract

In this study, we investigate the flame stabilization behavior in hydrogen-enriched stratified swirl flames after the flame flashes back into an annular mixing tube with an axial swirler of swirl number 0.9. Two different modes of flame stabilization, namely intermediate stabilization and flameholding, are identified. For 80% or higher hydrogen enrichment of the fuel, the flashback is found to result in flameholding. Acetone-PLIF measurements are used to assess the equivalence ratio distribution in the mixing tube. It is shown that the flow inside the mixing tube has intermittent presence of fuel-rich pockets. Furthermore, high speed laser diagnostic and simultaneous chemiluminescence imaging was carried out to understand the transition of flame propagation from the center-body boundary layer to the outer wall boundary layer. With the help of time-resolved images and simultaneous velocity fields, four different stages of flashback-to-flameholding transition were identified. It was noted that the bright flame kernels formed due to the flame's interaction with fuel-rich pockets, impose significant deflection on the approach flow in the vicinity of the outer wall boundary layer. Acute-tipped narrow flame structures were found to anchor the flame on the outer wall. These flame structures were found to accelerate upstream upon reaching the fuel-rich regions in the outer wall boundary layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call