Abstract

The transition between the closed and open conformations of the Sec61 complex permits nascent protein insertion into the translocation channel. A critical event in this structural transition is the opening of the lateral translocon gate that is formed by four transmembrane (TM) spans (TM2, TM3, TM7 and TM8 in Sec61p) to expose the signal sequence-binding (SSB) site. To gain mechanistic insight into lateral gate opening, mutations were introduced into a lumenal loop (L7) that connects TM7 and TM8. The sec61 L7 mutants were found to have defects in both the posttranslational and cotranslational translocation pathways due to a kinetic delay in channel gating. The translocation defect caused by L7 mutations could be suppressed by the prl class of sec61 alleles that reduce the fidelity of signal sequence recognition. The prl mutants are proposed to act by destabilizing the closed conformation of the translocation channel. Our results indicate that the equilibrium between the open and closed conformations of the protein translocation channel maintains a balance between translocation activity and signal sequence recognition fidelity. In the opening of the translocation channel, both the lateral and lumenal gate must open in a coordinated fashion for efficient protein translocation to occur. The lumenal gate is composed of a short helix of the loop preceding the second TM span, referred to as the plug helix, and six hydrophobic pore ring residues which form the constriction ring in the center of the channel. We identified three lateral gate polar residues and three hydrophobic residues from the plug domain that affect channel gating. Mutagenesis of the lateral gate polar cluster residues yields either a gain of function (prl phenotype) or a loss of function (translocation defect) phenotype. The combination of polar cluster

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call