Abstract

Simulating photosynthesis has long been one of the ideas for realizing the conversion of solar energy into industrial chemicals. Heterogeneous N2 photofixation in water is a promising way for sustainable production of ammonia. However, a mechanistic understanding of the complex aqueous photocatalytic N2 reduction is still lacking. In this study, a light-dependent surface hydrogenation mechanism and light-independent protection of catalyst surface for N2 reduction are revealed on ultrathin Bi4 O5 Br2 (BOB) nanosheets, in which the creation and annihilation of surface bromine vacancies can be controlled via a surface bromine cycle. Our rapid scan in situ FT-IR spectra verify that photocatalytic N2 reduction proceeds through an associative alternating mechanism on BOB surface with bromine vacancies (BrV-BOB). This work provides a new strategy to combine light-dependent facilitated reaction with light-independent regeneration of catalyst for advancing sustainable ammonia production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.