Abstract

A thermodynamic model is developed using a one-dimensional model, LOGEcat to understand the dry reforming of methane over nickel-based catalysts. To do so, we have extended our previously developed mechanism (Rakhi and Shrestha in React Kinet, Mech Catal 135:3059–3083, 2022) which contains 21 reversible reactions by adding 5 more reversible reactions and updating the thermochemistry of one intermediate species. The adjusted mechanism contains 26 reversible reactions obtained with the help of thermodynamic analysis. This study focuses on using the thermodynamic model for dry reforming of methane and insights into the reaction pathways and sensitivity analysis for the kinetically consistent surface reaction mechanism. The applicability of the mechanism is examined for reactor conditions in terms of parameters such as temperature by comparing the results with the available reference data. The mechanism is able to accurately express the reforming conditions of methane over the nickel catalyst for complete range of temperature and also provide useful insights into the reaction pathways established with the thermodynamic model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call