Abstract
The serial interval distribution is used to approximate the generation time distribution, an essential parameter to infer the transmissibility (${R}_t$) of an epidemic. However, serial interval distributions may change as an epidemic progresses. We examined detailed contact tracing data on laboratory-confirmed cases of COVID-19 in Hong Kong during the five waves from January 2020 to July 2022. We reconstructed the transmission pairs and estimated time-varying effective serial interval distributions and factors associated with longer or shorter intervals. Finally, we assessed the biases in estimating transmissibility using constant serial interval distributions. We found clear temporal changes in mean serial interval estimates within each epidemic wave studied and across waves, with mean serial intervals ranged from 5.5 days (95% CrI: 4.4, 6.6) to 2.7 (95% CrI: 2.2, 3.2) days. The mean serial intervals shortened or lengthened over time, which were found to be closely associated with the temporal variation in COVID-19 case profiles and public health and social measures and could lead to the biases in predicting ${R}_t$. Accounting for the impact of these factors, the time-varying quantification of serial interval distributions could lead to improved estimation of ${R}_t$, and provide additional insights into the impact of public health measures on transmission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.