Abstract

The non-isothermal pyrolysis of polyethylene terephthalate (PET), polyamide 6 (PA6), and their mixtures was studied in a thermogravimetric analyzer at different heating rates. Temperature of maximum decomposition (Tmax) decreased by 25–45 °C and 35–55 °C for the PET:PA6 mixtures (3:1, 1:1, 1:3) compared to PET and PA6, respectively. The kinetic analysis was initially carried out using isoconversional method. However, the dependency of activation energy on conversion was observed for the co-pyrolysis of PET and PA6 that suggested the occurrence of multi-step reactions in the mixtures. Distributed activation energy model (DAEM) was used in this study to describe the multistep reactions occurring during pyrolysis of PET:PA6 mixtures. In this work, a four-parallel reaction DAEM was developed to describe the pyrolysis kinetics of PET:PA6 mixtures. The apparent mean activation energies (Eo) for PET, PA6, and mixtures varied in the range of 244–255, 140–215, and 138–255 kJ mol−1, respectively. The mass loss profiles of PET and PA6 mixtures were also modeled using artificial neural network (ANN). Out of 155 ANN models, the best prediction was made by ANN511 with R2 greater than 0.997 for both test and unseen data. The interaction effects observed through TGA experiments and subsequent kinetic analysis were further assessed in terms of product composition using analytical pyrolysis coupled with gas chromatograph/mass spectrometer (Py-GC/MS). Co-pyrolysis of PET and PA6 resulted in the formation of new aromatic compounds with nitrogen-containing functional groups, which were not detected when PET or PA6 were pyrolyzed individually.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.