Abstract
The search for novel, natural, high-sweetness, low-calorie sweeteners remains open and challenging. In the present study, the structure-based machine learning modeling and sweetness recognition mechanism were investigated to assist this process. It was found that whether or not a compound was sweet was closely related to molecular connectivity and composition (the number of hydrogen bond acceptors and donors), tpsaEfficiency, structural complexity, and shape (nAtomP and Fsp3). While the relative sweetness of sweet compounds was more determined by the molecular properties (tpsaEfficiency and Log P), structural complexity and composition (nAtomP and ATSm 1). The built machine learning models exhibited very good performance for classifying the sweet/non-sweet compounds and predicting the relative sweetness of the compounds. Moreover, a specific binding pocket was found for sweet compounds, and the sweet compounds mainly interacted with the VFT domain of the T1R2-T1R3 through hydrogen bonds. In addition, the results indicated that among the sweet compounds, those that were sweeter bound to the VFT domain stronger than those that had low sweetness. This study provides very useful information for developing new sweeteners.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.