Abstract
Aqueous Zn-ion batteries (ZIBs) have garnered significant interest in recent years due to their potential applications in large-scale stationary energy storage. Early ZIBs research has primarily focused on searching for better cathodes and understanding cathodic Zn2+ storage mechanisms. Only very recently has ZIBs research shifted to Zn anode. Here in this study, we report on insights into the interactions between Zn anode and aqueous Zn-salt electrolytes gained by a systematic investigation of bulk properties of electrolytes, surface properties of the reacted Zn, electrokinetics of Zn/Zn2+ redox reaction and cycle stability of Zn/electrolyte/Zn symmetrical cells. We found that Zn metal surface, regardless of electrolyte, are always covered by a layer of Zn-containing layered double hydroxides (Zn-LDHs) upon contact with aqueous Zn-electrolytes. We show that “OH− production” pathway resulted from the dissolved oxygen in Zn-electrolytes is the root cause for the Zn-LDHs formation. The electrokinetic studies reveal that Zn/Zn(ClO4)2 interface has the highest exchange current density, while the symmetrical cell tests show that Zn(OTf)2 is the most stable electrolyte for Zn-metal anode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.