Abstract

It is now well understood that, although proteins fold spontaneously (in a thermodynamic sense), many nevertheless require the assistance of helpers called molecular chaperones to reach their correct and active folded state in living cells. This is because the pathways of protein folding are full of traps for the unwary: the forces that drive proteins into their folded states can also drive them into insoluble aggregates, and, particularly when cells are stressed, this can lead, without prevention or correction, to cell death. The chaperonins are a family of molecular chaperones, practically ubiquitous in all living organisms, which possess a remarkable structure and mechanism of action. They act as nanoboxes in which proteins can fold, isolated from their environment and from other partners with which they might, with potentially deleterious consequences, interact. The opening and closing of these boxes is timed by the binding and hydrolysis of ATP. The chaperonins which are found in bacteria are extremely well characterized, and, although those found in archaea (also known as thermosomes) and eukaryotes have received less attention, our understanding of these proteins is constantly improving. This short review will summarize what we know about chaperonin function in the cell from studies on the archaeal chaperonins, and show how recent work is improving our understanding of this essential class of molecular chaperones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.