Abstract

ObjectiveCysteine proteases are lysosomal enzymes that, under specific circumstances, may be secreted into the extracellular space and participate in protein turnover. This study investigated the involvement of cathepsin B in the gelatinolytic activity of mature dentin matrices at neutral pH. DesignHuman dentin fragments were made into powder and enzymes were extracted using guanidine-HCl/EDTA. Host-derived dentin proteases (cathepsin B, MMP-2 and MMP-9) were identified by immunoblotting, and their activities were evaluated spectrofluorimetrically using fluorogenic substrates. Proteases activities were monitored by measuring the rate of hydrolysis of substrates in the presence/absence of MMP- or cysteine cathepsin inhibitors, at neutral pH (7.4). Mass spectroscopy was used to determine the substrates’ cleavage points. Reverse zymography was performed to examine the gelatinolytic activity of cathepsin B. ResultsWestern-blots of dentin extracts yielded strong bands at 95, 72 and 30 kDa, corresponding respectively to MMP-9, MMP-2 and Cathepsin B. Greater fluorogenic substrates hydrolysis occurred in the absence of MMP and cysteine cathepsin inhibitors than in their presence. Cathepsin B exhibited significant gelatinolytic activity. ConclusionsTogether with MMP-2 and MMP-9, cathepsin B also account for the host-derived gelatinolytic activity and matrix turnover of mature dentin at physiological, neutral pH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.