Abstract

Electrochemical double-layer capacitors (EDLCs) are robust, high-power, and fast-charging energy storage devices. Rational design of novel electrolyte materials could further improve the performance of EDLCs. Computational methods offer immense scope in aiding the development of such materials. Trends in experimentally observed operative voltages nevertheless remain difficult to predict and understand. We discuss here the intriguing case of adiponitrile (ADN) versus 2-methyl-glutaronitrile (2MGN) based electrolytes, which result in very different operative voltages in EDLCs despite structural similarity. As a preliminary step, bulk electrolyte effects on electrochemical stability are investigated by ab initio molecular dynamics (AIMD) and static, cluster-based quantum chemistry calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.