Abstract

BackgroundBiodiversity surveys have long depended on traditional methods of taxonomy to inform sampling protocols and to determine when a representative sample of a given species pool of interest has been obtained. Questions remain as to how to design appropriate sampling efforts to accurately estimate total biodiversity. Here we consider the biodiversity of freshwater ostracods (crustacean class Ostracoda) from the region of Churchill, Manitoba, Canada. Through an analysis of observed species richness and complementarity, accumulation curves, and richness estimators, we conduct an a posteriori analysis of five bioblitz-style collection strategies that differed in terms of total duration, number of sites, protocol flexibility to heterogeneous habitats, sorting of specimens for analysis, and primary purpose of collection. We used DNA barcoding to group specimens into molecular operational taxonomic units for comparison.ResultsForty-eight provisional species were identified through genetic divergences, up from the 30 species previously known and documented in literature from the Churchill region. We found differential sampling efficiency among the five strategies, with liberal sorting of specimens for molecular analysis, protocol flexibility (and particularly a focus on covering diverse microhabitats), and a taxon-specific focus to collection having strong influences on garnering more accurate species richness estimates.ConclusionsOur findings have implications for the successful design of future biodiversity surveys and citizen-science collection projects, which are becoming increasingly popular and have been shown to produce reliable results for a variety of taxa despite relying on largely untrained collectors. We propose that efficiency of biodiversity surveys can be increased by non-experts deliberately selecting diverse microhabitats; by conducting two rounds of molecular analysis, with the numbers of samples processed during round two informed by the singleton prevalence during round one; and by having sub-teams (even if all non-experts) focus on select taxa. Our study also provides new insights into subarctic diversity of freshwater Ostracoda and contributes to the broader “Barcoding Biotas” campaign at Churchill. Finally, we comment on the associated implications and future research directions for community ecology analyses and biodiversity surveys through DNA barcoding, which we show here to be an efficient technique enabling rapid biodiversity quantification in understudied taxa.

Highlights

  • Biodiversity surveys have long depended on traditional methods of taxonomy to inform sampling protocols and to determine when a representative sample of a given species pool of interest has been obtained

  • This study presents an a posteriori analysis evaluating the success of five sampling strategies in both capturing and estimating the regional diversity of freshwater ostracods in the Churchill region, as this site was selected for an intensive “barcoding biotas” regional biodiversity survey employing DNA barcoding methods

  • Our study provides evidence that the rationale behind a sampling strategy is as important as the equipment used during bioblitzes

Read more

Summary

Introduction

Biodiversity surveys have long depended on traditional methods of taxonomy to inform sampling protocols and to determine when a representative sample of a given species pool of interest has been obtained. One of the biggest impediments to conducting large-scale biodiversity surveys lies in the taxonomic identification of target organisms. This is especially true when dealing with microinvertebrates, where defining morphological features are often discernible only through intensive methods such as slide preparation and microscopy. Ostracods are very common in benthic freshwater communities, and occur in marine, intertidal, or semi-terrestrial environments They are useful model organisms for studies on various aspects of ecology and evolution [1,2,3,4,5], given the high prevalence of their calcified bivalve shells in the freshwater fossil record as well as their variability in breeding systems [6,7]. The projected global diversity in all habitat types is estimated to be approximately 13,000 [9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.