Abstract
Event cameras measure scene changes with high temporal resolutions, making them well-suited for visual motion estimation. The activation of pixels results in an asynchronous stream of digital data (events), which rolls continuously over time without the discrete temporal boundaries typical of frame-based cameras (where a data packet or frame is emitted at a fixed temporal rate). As such, it is not trivial to define a priori how to group/accumulate events in a way that is sufficient for computation. The suitable number of events can greatly vary for different environments, motion patterns, and tasks. In this paper, we use neural networks for rotational motion estimation as a scenario to investigate the appropriate selection of event batches to populate input tensors. Our results show that batch selection has a large impact on the results: training should be performed on a wide variety of different batches, regardless of the batch selection method; a simple fixed-time window is a good choice for inference with respect to fixed-count batches, and it also demonstrates comparable performance to more complex methods. Our initial hypothesis that a minimal amount of events is required to estimate motion (as in contrast maximization) is not valid when estimating motion with a neural network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.