Abstract

Stable isotope and elemental measurements were conducted on foraminifera from a sequence of calcareous pelagic ooze at Ocean Drilling Program Site 1209 to document the thermal evolution of the North Pacific water column over Shatsky Rise and to address long‐standing questions about the nature of oceanic circulation in the early Paleogene. A major change in seasonality and water column structure in the early Eocene marks a change in tropical Pacific climate and circulation just prior to the early Eocene climatic optimum. Subsequent long‐term cooling is interrupted by a transient positive δ18O excursion identified in planktonic and benthic foraminifera during the late early Eocene that is interpreted as evidence for ephemeral formation of deep water from a low‐latitude, saline source. Paired analysis of benthic Mg/Ca and δ18O was undertaken to assess the relative contribution of temperature and seawater oxygen isotope composition to the benthic δ18O record. Stratigraphic trends of benthic δ18O and Mg/Ca decouple during two intervals in the early Eocene and early middle Eocene. Although variable seawater δ18O is the most likely candidate to explain decoupling of benthic δ18O and Mg/Ca, it is difficult to argue for substantial change in continental ice volume during a presumably ice‐free interval of time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call