Abstract

Gentiana straminea Maxim. is a perennial herb and mainly distributed in the Qinghai-Tibetan Plateau. To adapt to the extreme environment, it has developed particular morphological, physiological and genetic structures. Also, rich in iridoids, it is one of the original plants of traditional Chinese herb "Qinjiao". Herein, we present its first chromosome-level genome sequence assembly, and compare it with the genomes of other Gentiana species to facilitate the analysis of genomic characteristics. The assembled genome size of G. straminea was 1.25 Gb, with a contig N50 of 7.5Mb. A total of 96.08% of the genome sequences was anchored on 13 pseudochromosomes, with a scaffold N50 of 92.70Mb. A total of 54,310 protein-coding genes were predicted, 80.25% of which were functionally annotated. Comparative genomic analyses indicated that G. straminea experienced two whole-genome duplication events after the γ whole-genome triplication with other eudicots, and it diverged from other Gentiana species at ~3.2 Mya. A total of 142 enzyme-coding genes related to iridoid biosynthesis were identified in its genome. Additionally, we identified differences in the number and expression patterns of iridoid biosynthetic pathway genes in G. straminea compared with two other Gentiana species by integrating whole-genome sequence and transcriptomic analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call