Abstract

As an essential component of the viral envelope, M2 proton channel plays a central role in the virus replications and has been a key target for drug design against the influenza A viruses. The adamantadine-based drugs, such as amantadine and rimantadine, were developed for blocking the channel so as to suppress the replication of viruses. However, patients, especially those infected by the H1N1 influenza A viruses, are increasingly suffering from the drug-resistance problem. According to the findings revealed recently by the high-resolution NMR studies, the drug-resistance problem is due to the structural allostery caused by some mutations, such as L26F, V27A and S31N, in the four-helix bundle of the channel. In this study, we are to address this problem from a dynamic point of view by conducting molecular dynamics (MD) simulations on both the open and the closed states of the wild-type (WT) and S31N mutant M2 channels in the presence of rimantadine. It was observed from the MD simulated structures that the mutant channel could still keep open even if binding with rimantadine, but the WT channel could not. This was because the mutation would destabilize the helix bundle and trigger it from a compact packing state to a loose one. It is anticipated that the findings may provide useful insights for in-depth understanding the action mechanism of the M2 channel and developing more-effective drugs against influenza A viruses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.