Abstract

Gambiense human African trypanosomiasis (gHAT) is a parasitic, vector-borne neglected tropical disease that has historically affected populations across West and Central Africa and can result in death if untreated. Following from the success of recent intervention programmes against gHAT, the World Health Organization (WHO) has defined a 2030 goal of global elimination of transmission (EOT). The key proposed indicator to measure achievement of the goal is zero reported cases. Results of previous mathematical modelling and quantitative analyses are brought together to explore both the implications of the proposed indicator and the feasibility of achieving the WHO goal. Whilst the indicator of zero case reporting is clear and measurable, it is an imperfect proxy for EOT and could arise either before or after EOT is achieved. Lagging reporting of infection and imperfect diagnostic specificity could result in case reporting after EOT, whereas the converse could be true due to underreporting, lack of coverage, and cryptic human and animal reservoirs. At the village-scale, the WHO recommendation of continuing active screening until there are three years of zero cases yields a high probability of local EOT, but extrapolating this result to larger spatial scales is complex. Predictive modelling of gHAT has consistently found that EOT by 2030 is unlikely across key endemic regions if current medical-only strategies are not bolstered by improved coverage, reduced time to detection and/or complementary vector control. Unfortunately, projected costs for strategies expected to meet EOT are high in the short term and strategies that are cost-effective in reducing burden are unlikely to result in EOT by 2030. Future modelling work should aim to provide predictions while taking into account uncertainties in stochastic dynamics and infection reservoirs, as well as assessment of multiple spatial scales, reactive strategies, and measurable proxies of EOT.

Highlights

  • Predictive modelling of gambiense human African trypanosomiasis (gHAT) has consistently found that elimination of transmission (EOT) by 2030 is unlikely across key endemic regions if current medical-only strategies are not bolstered by improved coverage, reduced time to detection and/or complementary vector control

  • Gambiense human African trypanosomiasis is an infection caused by the parasite Trypanosoma brucei gambiense, spread through blood-meal feeding by tsetse in West and Central Africa

  • There are a variety of tools available to assist in the control of gHAT and these have been effective at reducing the burden of gHAT from 37,385 cases in 1998 to 953 cases in 20181

Read more

Summary

OPEN LETTER

Insights from quantitative and mathematical modelling on the proposed 2030 goal for gambiense human African trypanosomiasis (gHAT) [version 1; peer review: 1 approved, 1 approved with reservations].

Invited Reviewers report report
Background
Is the new target technically feasible under the current disease strategy?
What are the biggest risks?
Findings
Open Peer Review
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call