Abstract

The objective of this work is to explore the use of flow dimensions as a tool for characterizing hydraulic conditions in faulted media. Transient flow is numerically simulated in synthetic vertically-faulted reservoirs. Analysis of the obtained time series following the Generalized Radial Flow (GRF) model displays combined radial and fractional signals with a flow dimension n = 1.5 . Investigating the transient geometry of the frontal equipotential surface shows that fractional flow occurrence is due to abnormal fault diffusion as a consequence of water supply from the matrix under specific conditions. An original hydrodynamical explanation for fractional flow in vertically faulted media is suggested, along with a reinterpretation of the bilinear regime. It is shown that the GRF theory remains valid in such discontinuum as the fundamental relationship between n and the cross-flow area is satisfied. These results provide insights in the use of the flow dimension as a hydraulic diagnostic tool in faulted media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.