Abstract
The complex interface reactions are crucial to the performance of the Li2MnO3 cathode material. Here, the interface reactions between the liquid electrolyte and the typical surfaces of Li2MnO3 during the charging process are systematically investigated by ab initio molecular dynamics (AIMD) simulation and first-principles calculation. The results indicate that these interface reactions lead to the formation of hydroxide radicals, oxygen, carbon dioxide, carbonate radicals, and other products, which are consistent with the experimental findings. These processes primarily result from the conversion of the stable closed-shell O2- into reactive oxygen ions by electron loss. All surfaces exhibit some degree of layered- and spinel-like phase transitions during the AIMD simulations, consistent with the experiment. This is mainly attributed to the decrease in the Mn-O bond strength and the increase in the Li/O ion vacancy concentration. This study offers valuable theoretical insights into the interface reaction between lithium-rich cathode materials and liquid electrolytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.