Abstract

On-road traffic is the primary source of air pollutants in Cuenca (2500 m. a.s.l.), an Andean city in Ecuador. Most of the buses in the country run on diesel, emitting high amounts of NOx (NO + NO2) and PM2.5, among other air pollutants. Currently, an electric tram system is beginning to operate in this city, accompanied by new routes for urban buses, changing the spatial distribution of the city’s emissions, and alleviating the impact in the historic center. The Ecuadorian energy efficiency law requires that all vehicles incorporated into the public transportation system must be electric by 2025. As an early and preliminary assessment of the impact of this shift, we simulated the air quality during two scenarios: (1) A reference scenario corresponding to buses running on diesel (DB) and (2) the future scenario with electric buses (EB). We used the Eulerian Weather Research and Forecasting with Chemistry (WRF-Chem) model for simulating the air quality during September, based on the last available emission inventory (year 2014). The difference in the results of the two scenarios (DB-EB) showed decreases in the daily maximum hourly NO2 (between 0.8 to 16.4 µg m−3, median 7.1 µg m−3), and in the 24-h mean PM2.5 (0.2 to 1.8 µg m−3, median 0.9 µg m−3) concentrations. However, the daily maximum 8-h mean ozone (O3) increased (1.1 to 8.0 µg m−3, median 3.5 µg m−3). Apart from the primary air quality benefits acquired due to decreases in NO2 and PM2.5 levels, and owing to the volatile organic compounds (VOC)-limited regime for O3 production in this city, modeling suggests that VOC controls should accompany future NOx reduction for avoiding increases in O3. Modeled tendencies of these pollutants when moving from the DB to EB scenario were consistent with the tendencies observed during the COVID-19 lockdown in this city, which is a unique reference for appreciating the potentiality and identifying insights for air quality improvements. This consistency supports the approach and results of this contribution, which provides early insights into the effects on air quality due to the recent operability of the electric tram and the future shift from diesel to electric buses in Cuenca.

Highlights

  • On-road traffic is one of the most important sources of air pollutants in cities located in Ecuador [1,2].Emissions from this source are exacerbated for cities located in the Andean region of the country, owing to their altitude, where the content of atmospheric oxygen is lower compared to at sea level

  • Modeled tendencies of these pollutants when moving from the DB to electric buses (EB) scenario were consistent with the tendencies observed during the COVID-19 lockdown in this city, which is a unique reference for appreciating the potentiality and identifying insights for air quality improvements

  • We focused our analyses on Cuenca, our results can act as a preliminary reference for other medium–large Ecuadorian cities, which share similar features with regards to their vehicular fleets and emission contributions [1,2]

Read more

Summary

Introduction

On-road traffic is one of the most important sources of air pollutants in cities located in Ecuador [1,2]. Emissions from this source are exacerbated for cities located in the Andean region of the country, owing to their altitude, where the content of atmospheric oxygen is lower compared to at sea level. A.s.l.), which is a city located in the Southern Andean region of the country (Figure 1), during 2014, on-road traffic, among other pollutants, emitted 5981.0 and 384.0 t y−1 of NOx (NO + NO2 ) and PM2.5 , respectively, representing 71.2% and 42.2% of the total emissions of each pollutant [4].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call