Abstract

BackgroundThe enzyme farnesyl diphosphate synthase (FPPS) is positioned in the intersection of different sterol biosynthesis pathways such as those producing isoprenoids, dolichols and ergosterol. FPPS is ubiquitous in eukaryotes and is inhibited by nitrogen-containing bisphosphonates (N-BP). N-BP activity and the mechanisms of cell death as well as damage to the ultrastructure due to N-BP has not yet been investigated in Leishmania infantum and Giardia. Thus, we evaluated the effect of N-BP on cell viability and ultrastructure and then performed structural modelling and phylogenetic analysis on the FPPS enzymes of Leishmania and Giardia.MethodsWe performed multiple sequence alignment with MAFFT, phylogenetic analysis with MEGA7, and 3D structural modelling for FPPS with Modeller 9.18 and on I-Tasser server. We performed concentration curves with N-BP in Leishmania promastigotes and Giardia trophozoites to estimate the IC50via the MTS/PMS viability method. The ultrastructure was evaluated by transmission electron microscopy, and the mechanism of cell death by flow cytometry.ResultsThe nitrogen-containing bisphosphonate risedronate had stronger anti-proliferative activity in Leishmania compared to other N-BPs with an IC50 of 13.8 µM, followed by ibandronate and alendronate with IC50 values of 85.1 µM and 112.2 µM, respectively. The effect of N-BPs was much lower on trophozoites of Giardia than Leishmania (IC50 of 311 µM for risedronate). Giardia treated with N-BP displayed concentric membranes around the nucleus and nuclear pyknosis. Leishmania had mitochondrial swelling, myelin figures, double membranes, and plasma membrane blebbing. The same population labelled with annexin-V and 7-AAD had a loss of membrane potential (TMRE), indicative of apoptosis. Multiple sequence alignments and structural alignments of FPPS proteins showed that Giardia and Leishmania FPPS display low amino acid identity but possess the conserved aspartate-rich motifs.ConclusionsGiardia and Leishmania FPPS enzymes are phylogenetically distant but display conserved protein signatures. The N-BPs effect on FPPS was more pronounced in Leishmania than Giardia. This might be due to general differences in metabolism and differences in the FPPS catalytic site.

Highlights

  • The enzyme farnesyl diphosphate synthase (FPPS) is positioned in the intersection of different sterol biosynthesis pathways such as those producing isoprenoids, dolichols and ergosterol

  • Despite the low identity of Giardia FPPS with Leishmania and other eukaryotes, Giardia FPPS has conserved aspartate-rich motifs that are characteristic of FPPS enzymes

  • Both motifs are involved in the catalytic site of the FPPS enzyme of several organisms, even in E. coli

Read more

Summary

Introduction

The enzyme farnesyl diphosphate synthase (FPPS) is positioned in the intersection of different sterol biosynthesis pathways such as those producing isoprenoids, dolichols and ergosterol. Farnesyl diphosphate synthase (FPPS) is a key enzyme in sterol metabolism. It is positioned at the intersection of different pathways, including those involved in the biosynthesis of isoprenoids, dolichols, ubiquinones and ergosterol/cholesterol. Other pathways and enzymes of sterol metabolism include isoprenoid/prenylation and the dolichol biosynthesis. These pathways are ubiquitous in eukaryotes but have not received much attention. Genomic analysis has facilitated prediction of several metabolic pathways among eukaryotic organisms [3] and these predicted pathways enable comparisons to be made between sterol metabolism in early branching protozoans such as Giardia and Leishmania

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call