Abstract

Peroxone disintegration–Fe(III) coagulation (peroxone–Fe(III)) joint conditioning was proposed to enhance the horizontal electro-dewatering (HED) effect of activated sludge (AS). Operating parameters were optimized and the evolutions of AS physicochemical properties, water fractions distribution, organic matter, extracellular polymeric substance (EPS) key components, functional groups, and protein secondary structures during the process were identified. Under the optimized joint conditioning parameters, dewatered AS achieved a final water content of 84.88 ± 0.17% and its bound water content (BWC) was decreased by 1.88 ± 0.28 g/g dry solid. During peroxone pretreatment, the yielded HO decreased the AS floc size, disintegrated the EPS network structure and cell wall, released the bound water, and extracted proteins, polysaccharides, and humic acid-like materials. Furthermore, soluble microbial byproduct-like materials (SMBP) in the EPS layers and tyrosine in tightly bound EPS significantly increased. Protein structures were destroyed, decreasing their water affinity. Subsequent Fe(III) addition re-coagulated broken flocs fragments and EPS fractions, built water flow channels, removed tyrosine and SMBP, and reduced α-helix percentage in slime, facilitating AS dewatering. After joint conditioning, the bound water and intracellular substances were further released by HED. Therefore, the peroxone–Fe(III)–HED process exhibited an excellent performance in AS water reduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call