Abstract

Thyroid hormones are involved in numerous physiological processes as regulators of metabolism, regulating organ growth, and mental state. Bisphenol compounds (BPs) are recognized as chemicals that interfere with endocrine balance. Because BPs have a similar structure to thyroxine, they can compete for binding to thyroid protein and disrupt the normal physiological activity of the thyroid system. In this study, three typical bisphenol compounds were selected to explore the interaction between BPs and TTR by computer simulations and multi-spectroscopic methods. The results revealed that BPs quenched the endogenous fluorescence of TTR via the combination of static quenching and non-radiative energy transfer, and the van der Waals forces and hydrogen bonding played a synergistic role in the binding process of BPs and TTR. Furthermore, the three-dimensional fluorescence spectroscopy, UV-vis spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy, which were employed to determine the conformation of protein, revealed that binding of BPs with TTR could induce conformational changes in TTR. In addition, the binding sites and the residues surrounding the BPs within the TTR were determined through molecular docking and molecular dynamics simulation. Therefore, this work provides new insights into the interaction between BPs and TTR to evaluate the potential toxicity of BPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.