Abstract

Abstract In Tunisian Ghadames sag basin, a significant portion of natural gas resources are looked within low permeability Ordovician sandstones deposited immediately below the Early Silurian Tannezuft world-class source rock. The objective of this study was to develop an integrated approach to better estimate the amount of gas stored in this emerging play via the analysis of four fundamental elements: 1) the thermal maturity of the Silurian ‘hot shales’ source rock, 2) the trapping mechanism and the architecture of Upper Ordovician paleo-valleys, 3) the impact of diagenesis-lithofacies association on petrophysical properties, and 4) the fracture distribution/density and their contribution in the production. The Early Silurian hot shales constitute the essential ingredient for the development of a pervasive gas accumulation play. The gas generated at the deeper part of the basin has charged the underlying Ordovician low-permeability sandstones mainly through complex faults system inherited from the basement. During hydrocarbon maturation and charging, pore pressure increases at rates that exceed the normal gradients, leading to local over-pressure as seen in several wells drilled down to the Ordovician reservoirs. Lateral migration via regional faults is confirmed by numerous discoveries at the edges of the basin far away from the gas kitchen. Besides the structural closures accumulations, more complex structural/stratigraphic or purely stratigraphic traps are deemed within the Late Ordovician, and documented for instance by the development of incised paleovalleys filled with multiple fluvio-glacial and marine clastic sediments (i.e Algeria, Libya). The discovery of hydrocarbon pay zones outside of structural closures and the result of the long term tests confirm this hypothesis. Based on seismic data it is generally very hard to recognize the paleorelief marking the base of the Late Ordovician sequence. Key elements from core studies, regional correlations, isochore maps and sequence stratigraphy have been combined accordingly, leading to a conceptual model within the observed framework. It is then possible to identify the multiple incision surfaces associated with reservoirs of Jeffara and M'Krata Formations. The reservoir quality is considered as a major risk in deep areas (>4 km). Although, the primary pores space have been occluded by quartz overgrowths and clay cementation or lost by lithostatic compaction. The substantial gas rates observed in several wells drilled in the junction of NE-SW and NS fault trends constitute an evidence of the contribution of open fracture into the flow. This new insight into this play has been used by OMV to identify in Ghadames basin the area with possible "Tunnel Valley features", analogues to those drilled in Libya Murzuk basin (Ghienne, 2003).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.