Abstract
The non-metallic photocatalyst g-C3N4 is characterized by non-toxicity and straightforward preparation. Still, the drawbacks of low specific surface area and fast carrier complexation rate limit its practical application in photocatalysis. In this work, Co-doped g-C3N4 was prepared on the surface of diatomite (DE) through a simple one-step calcination method and used to degrade 4-chlorophenol (4-CP). Photocatalytic experiments showed that Co-g-C3N4/DE removed up to 98.7% of 4-CP. The doping of Co could capture the photogenerated electrons, thereby reducing the recombination of photocarriers and accelerating the oxidation–reduction reaction of Co3+/Co2+ and H2O2, promoting the generation of OH. Introducing DE improved the aggregation of g-C3N4 and expanded its surface area. Moreover, the Co-g-C3N4/DE composite material exhibited a low metal leaching rate and good reusability throughout the experiments. In addition, based on DFT calculations, the ROS attack mechanism of 4-CP degradation was speculated and calculated. The final product of 4-CP was found to pose a more minor environmental threat, according to the T.E.S.T. In short, the prepared Co-g-C3N4/DE composite realized the capture of photogenerated electrons and the acceleration of photocatalytic reactions, which are expected to solve the challenges in wastewater treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.