Abstract

Mechanism of CWS (coal water slurry) electrolysis was investigated by using anode reaction kinetics. The results indicated that the activation energies of electrode reaction reduce with the increase in activity of carbon materials. According to the electrode reaction kinetics, the direct oxidation of CWS electrolysis occurred easily under lower concentration of electrolyte and higher concentration of CWS. On the contrary, the indirect oxidation of CWS electrolysis took place. Because of the high oxygen evolution potential of water electrolysis in H2SO4 solution (1.23 V), the direct oxidation of CWS electrolysis mainly occurred under water decomposition potential (0.5–1.23 V). As NaOH solution was used as electrolyte, it was difficult to distinguish direct and indirect oxidation under the low potential (0.4 V). With increasing stirring rate, the electrode reaction activation energies of GWS (graphite water slurry) electrolysis increased slightly and were always lower than 40 kJ/mol. The results indicated that GWS electrolysis was controlled by diffusion and the increase in stirring rate could not reduce the polarization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.