Abstract

The aim of this paper is to discuss a novel approach to provide insights on the probability of vent opening in calderas, using a dynamic model of sill intrusion. The evolution of the stress field is the main factor that controls the vent opening processes in volcanic calderas. On the basis of previous studies, we think that the intrusion of sills is one of the most common mechanism governing caldera unrest. Therefore, we have investigated the spatial and temporal evolution of the stress field due to the emplacement of a sill at shallow depth to provide insight on vent opening probability. We carried out several numerical experiments by using a physical model, to assess the role of the magma properties (viscosity), host rock characteristics (Young’s modulus and thickness), and dynamics of the intrusion process (mass flow rate) in controlling the stress field. Our experiments highlight that high magma viscosity produces larger stress values, while low magma viscosity leads to lower stresses and favors the radial spreading of the sill. Also high-rock Young’s modulus gives high stress intensity, whereas low values of Young’s modulus produce a dramatic reduction of the stress associated with the intrusive process. The maximum intensity of tensile stress is concentrated at the front of the sill and propagates radially with it, over time. In our simulations, we find that maximum values of tensile stress occur in ring-shaped areas with radius ranging between 350 m and 2500 m from the injection point, depending on the model parameters. The probability of vent opening is higher in these areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call