Abstract
Nitrate reduction coupled with arsenic (As) oxidation strongly influences the bioavailability and toxicity of As in anaerobic environments. In the present study, five representative paddy soils developed from different parent materials were used to investigate the universality and characteristics of nitrate reduction coupled with As oxidation in paddy soils. Experimental results indicated that 99.8 % of highly toxic aqueous As(III) was transformed to dissolved As(V) and Fe-bound As(V) in the presence of nitrate within 2–8 d, suggesting that As was apt to be reserved in its low-toxic and nonlabile form after nitrate treatment. Furthermore, nitrate additions also significantly induced the higher abundance of 16S rRNA and As(III) oxidase (aioA) genes in the five paddy soils, especially in the soils developed from purple sand-earth rock and quaternary red clay, which increased by 10 and 3–5 times, respectively, after nitrate was added. Moreover, a variety of putative novel nitrate-dependent As(III)-oxidizing bacteria were identified based on metagenomic analysis, mainly including Aromatoleum, Paenibacillus, Microvirga, Herbaspirillum, Bradyrhizobium, Azospirillum. Overall, all these findings indicate that nitrate reduction coupled with As(III) oxidation is an important nitrogen-As coupling process prevalent in paddy environments and emphasize the significance of developing and popularizing nitrate-based biotechnology to control As pollution in paddy soils and reduce the risk of As compromising food security.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.