Abstract

The aggregation of nanoparticles is the key factor to form hot spots for the flocculation-enhanced Raman spectroscopy (FLERS) method. However, the structure of flocculation is still not clear. It is therefore necessary to explore and analyze the aggregation process of nanoparticles more carefully, so as to realize a better application of FLERS. Here, we report the application of in situ liquid cell transmission electron microscopy (TEM) combined with an in situ high-speed camera to analyze the particle behaviors. The results showed that flocculation can exist stably and the gap between the nanoparticles in the flocculation always remained at 7-9 nm, which ensured the high stability and sensitivity of the FLERS method. We successfully applied FLERS to the in situ noninvasive probing of cupping effect substances. The results indicated the scientific principle behind the traditional Chinese medicine method to some extent, which thus provides a new and effective method for the in situ dynamic monitoring of biological systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.