Abstract

Evaluation of the finite-temperature thermodynamic properties of the electrode materials generally helps to accurately describe the performance of Li-ion battery (LIBs). To know the characteristics of the layered lithium transition-metal oxides LiMO2 (M = Co, Ni, Mn) comprehensively, herein, the vibrational and related thermodynamic quantities of these electrode materials are investigated by using density functional perturbation theory (DFPT). Local density approximation (LDA) and generalized gradient approximation with the Hubbard model correction (GGA+U) yield similar results, either for the phonon dispersion or for the thermodynamic functions. Among the three layered lithium transition-metal oxides, the vibrational and thermodynamic properties of LiNiO2 is more close to that of LiMnO2, while relatively far away from that of LiCoO2, due to the same crystal structure of LiNiO2 and LiMnO2, which is different from that of LiCoO2. In addition, the corrections of average intercalation voltage as a function o...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.