Abstract

The effects of the vacancies on the structural stability, elastic constants, elastic moduli, brittle-to-ductile transition and electronic properties of Tantalum Silicide (TaSi2) are investigated in detail by first-principles calculations. The values of vacancy formation energy confirm that the perfect TaSi2 and TaSi2 with different atomic vacancies can exhibit the structural stability at ground state. It is found that Ta atom vacancies are more stable than Si atom vacancies in TaSi2 with vacancies. The elastic constants and elastic moduli describe the mechanical behavior for TaSi2 and TaSi2 with vacancies. The different atomic vacancies weaken the elastic stiffness for TaSi2. But the values of B/G confirm that the brittle-to-ductile transition occurs with different atomic vacancies for TaSi2. Although these vacancies make the shear and volume deformation resistance of TaSi2 weaker, they obviously improve the brittle behavior of TaSi2. The difference charge density and electronic structures are calculated to discuss and analyze the structural stability and mechanical properties for the perfect TaSi2 and TaSi2 with vacancies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.