Abstract

Biological activated carbon (BAC) has long been applied in China to guarantee water quality and to achieve drinking water regulations. However, a knowledge gap remains regarding the temporal dynamics of microbial communities, particularly microbe-based assembly and co-occurrence patterns. Accordingly, this study investigated the evolution of BAC microbial communities using a pilot-scale system and examined by multivariate ecological combined with high-throughput Illumina sequencing and statistical methods. The results showed that BAC microbial diversity reached its peak in 2 years and declined thereafter. Microbial communities composition was accompanied by significant temporal evolution in the BAC biofilm. Deterministic processes gained in importance along with time, especially homogeneous selection which contributed 59.09 %–75.63 % to the community assembly in 8-yr, 9-yr, and 10-yr BAC. According to co-occurrence network analysis, microbial networks have more unstable structures over time, as evidenced by higher modularity, heightened connectivity, and fewer keystones. Moreover, the interaction between microbial taxa tended to have a higher proportion of competitive relationships during the operation of the BAC tank, ranging from 13.51 % to 76.35 %. Based on these dynamic ecological processes, microbial community succession in BAC biofilm might undergo four phases: community establishment (Years 0–2); community stability (Years 2–5); community quasi-degradation (Years 5–8); community degradation (Years 8–10). The performance of BAC was greatly influenced by community development, and contaminant removal gradually decreased as community succession proceeded. These results add to our knowledge of microbial ecology and provide the basis for further research into microbial communities' regulation strategies in BAC tanks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call