Abstract

Piezophotocatalytic technology has emerged as a promising wastewater treatment approach recently. A novel piezoelectric material, the flexible bamboo-like BaTiO3//ZnO Janus nanofibers membrane (BTO//ZO JNM), was fabricated via side-by-side electrospinning. The as-prepared BTO//ZO JNM exhibited superior durability and universal applicability in the removal of bisphenol A, congo red, methylene blue and tetracycline hydrochloride under stir and light irradiation. The removal of these pollutions reached 94.75%, 93.45%, 99.06% and 97.65% within 60 min, respectively. The adsorption of Ni2+ and Cu2+ and their effects on catalytic degradation were also studied. Importantly, owing to the significantly raising macroscopic polarization, BTO//ZO JNM possessed higher degradation efficiency than that of uniaxial blend nanofibrous membrane, which was illustrated by COMSOL simulation. An in-depth understanding of piezophotocatalysis mechanism was speculated through construction-performance relationships of Janus heterojunction. This BTO//ZO JNM process will provide a new strategy for the development of piezoelectric materials for the treatment of mixed pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call