Abstract
Titanates are suitable for many applications such as oxygen sensing and tunable HTS (high temperature superconducting) microwave filters. The potential advantages of the nanostructured forms have been however scarcely explored compared to other oxides. In this work, the structural and electrical properties of individual iron-doped strontium titanate nanotubes (Fe:SrTiO3) grown by electrophoretic deposition (EPD) were assessed for the first time, showing high stability and reproducibility. This result paves the way to further development of more complex titanate-based devices, as for instance nanostructured oxygen STFO sensors. From experimental data, it was concluded that the polycrystalline form of Fe:SrTiO3 nanotubes is the major limitation to attain high photoconductivity gains when exposed to UV-light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.