Abstract

Controlling the spin degrees of freedom of photogenerated species in semiconductor nanostructures via magnetic doping is an emerging scientific field that may play an important role in the development of new spin-based technologies. The current work explores spin properties in colloidal CdSe/CdS:Mn seeded-nanorod structures doped with a dilute concentration of Mn2+ ions across the rods. The spin properties were determined using continuous-wave optically detected magnetic resonance (ODMR) spectroscopy recorded under variable microwave chopping frequencies. These experiments enabled the deconvolution of a few different radiative recombination processes: band-to-band, trap-to-band, and trap-to-trap emission. The results uncovered the major role of carrier trapping on the spin properties of elongated structures. The magnetic parameters, determined through spin-Hamiltonian simulation of the steady-state ODMR spectra, reflect anisotropy associated with carrier trapping at the seed/rod interface. These observations unveiled changes in the carriers' g-factors and spin-exchange coupling constants as well as extension of radiative and spin-lattice relaxation times due to magnetic coupling between interface carriers and neighboring Mn2+ ions. Overall, this work highlights that the spin degrees of freedom in seeded nanorods are governed by interfacial trapping and can be further manipulated by magnetic doping. These results provide insights into anisotropic nanostructure spin properties relevant to future spin-based technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.