Abstract

AbstractThe formation of the solid electrolyte interphase (SEI) in an ionic liquid electrolyte of 0.5 m lithium bis(fluorosulfonyl)imide (LiFSI) in 1‐ethyl‐3‐methylimidazolium bis(fluorosulfonyl)imide at high cell voltages (1.7–1.9 V) is investigated in ordered mesoporous carbon (OMC) based Li metal cells using an operando small‐angle neutron scattering (SANS) technique coupled with electrochemical impedance spectroscopy and ex situ X‐ray photoelectron spectroscopy (XPS). It is demonstrated that discharging the OMC Li metal cells to ≈2 V and holding the cell voltage constant induces a rapid current increase with time, confirming extensive reduction and SEI formation. XPS analysis reveals that LiF is formed at open cell voltage (OCV), which is attributed to the carbenes generated at the lithium negative electrode because of its reaction with EMIm cation diffusing to and initiating the reaction with FSI− anions at the carbon positive electrode. It is confirmed that the chemical reaction at OCV and electrochemical reduction at high cell voltage of the FSI− anion plays a protective role against EMIm cation co‐intercalation into the carbon positive electrode during the initial discharge. Operando SANS studies also suggest that slight differences occur in the surface composition and reaction mechanism as a function of cell voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.